Header shape illustration 1Header shape illustration 2
Back

Incorporating Graph Information in Transformer-based AMR Parsing

Pavlo Vasylenko, Pere-Lluís Huguet Cabot, Abelardo Carlos Martínez Lorenzo, Roberto Navigli

Abstract

Abstract Meaning Representation (AMR) is a Semantic Parsing formalism that aims at providing a semantic graph abstraction representing a given text. Current approaches are based on autoregressive language models such as BART or T5, fine-tuned through Teacher Forcing to obtain a linearized version of the AMR graph from a sentence. In this paper, we present LeakDistill, a model and method that explores a modification to the Transformer architecture, using structural adapters to explicitly incorporate graph information into the learned representations and improve AMR parsing performance. Our experiments show how, by employing word-to-node alignment to embed graph structural information into the encoder at training time, we can obtain state-of-the-art AMR parsing through self-knowledge distillation, even without the use of additional data. We release the code at http://www.github.com/sapienzanlp/LeakDistil

July 2023, Association for Computational Linguistics

Your privacy choices

Save and continue
Sign up!
The best way to get the latest news from Babelscape and the NLP world!
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Thank you for subscribing!
You’ve been added to our mailing list, and you’ll receive our next newsletter to stay updated on the latest news from the NLP world!
Something went wrong
We are sorry, your request cannot be processed right now.
Please wait a bit and try again.
Unsubscribe
We're sorry to see you go. Please enter your email address to complete the unsubscription process.
You'll receive an email confirmation shortly.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Check your email
We have sent you a link to your email to complete the unsubscribe process.
Something went wrong
We are sorry, your request cannot be processed right now.
Please wait a bit and try again.